

Home Search Collections Journals About Contact us My IOPscience

One-dimensional percolation problems with further neighbour bonds-transfer-matrix approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 16 125

(http://iopscience.iop.org/0305-4470/16/1/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 30/05/2010 at 16:13

Please note that terms and conditions apply.

One-dimensional percolation problem with further neighbour bonds—transfer-matrix approach

Z Q Zhang, F C Pu and T C Li

Institute of Physics, Chinese Academy of Sciences, Beijing, China

Received 15 June 1982

Abstract. The transfer-matrix method is used to find the exact expressions for the correlation length in the critical region for both one-dimensional site and bond percolation problems with bonds connecting *L*th-nearest neighbours (for any finite *L*). For the site percolation, the correlation length exponent ν is found to be *L*, consistent with the result obtained from the generating function method. For the bond percolation, we find $\nu = L(L+1)/2$.

1. Introduction

In the percolation problem, the one-dimensional system is one of the few cases where exact solutions can be found (for reviews see Stauffer 1979 and Essam 1980). Onedimensional site percolation with bonds connecting *L*th-nearest neighbour sites has been solved by the generating function method (Klein *et al* 1978). Although the critical occupation probability p_c is trivial in one dimension (p_c is always equal to 1), the critical exponents are found to be *L* dependent. In particular, the correlation length exponent ν is found to be equal to *L*. Such a 'bond range' dependence of the critical behaviour is closely related to the corresponding 'thermal' problem with multi-spin interactions (Klein *et al* 1978).

Recently, the transfer-matrix method has been used to find the exact critical behaviour for both one-dimensional site and bond percolation systems with further neighbour bonds (Zhang and Shen 1982). In that work, the authors showed that the transfer-matrix method gives the consistent result $\nu = L$ in the site percolation case. For the bond percolation, much richer critical behaviour was found. If all the *L*th-nearest neighbour bonds have equal occupation probability, ν is found to be L(L+1)/2. However, in that work, the calculations are only done for small L (L up to 3); no proof has been given for the case of general L. In this work, we give a systematic extension of the transfer-matrix method to one-dimensional percolation systems from previous low L values to any finite L.

2. Transfer matrix

Consider a linear chain with bonds connecting Lth-nearest neighbours (cf figure 1). Following the method used by Zhang and Shen (1982), we divide the chain into overlapping columns each containing L sites. If we take the sites $1, 2, \ldots, L-1$ and

0305-4470/83/010125+07 © 1983 The Institute of Physics

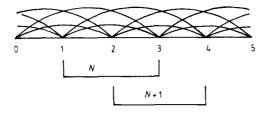


Figure 1. A linear chain with bonds connecting 3rd-nearest neighbours (L = 3). Sites (1, 2, 3) and (2, 3, 4) are taken to be the Nth and (N + 1)th columns respectively.

L as the Nth column, then the (N+1)th column contains sites 2, 3, ..., L and L+1. Since each site can be either connected or disconnected to the first column, there are 2^{L} configurations in each column. The transfer matrix transfers the probability distribution of various configurations in the Nth column to the (N+1)th column. The correlation length ξ is related to the largest non-trivial eigenvalue λ_{m} of the transfer matrix by the relation (Derrida and Vannimenus 1980)

$$\boldsymbol{\xi} = -1/\ln \lambda_{\mathrm{m}}.\tag{1}$$

From (1), the critical point and the correlation length exponent ν can be found (Zhang and Shen 1982).

To each *i*th site of the *N*th column we assign a value m_i which has the value 1 or 0 depending on whether the *i*th site is connected or disconnected to the first column. So, any configuration in the *N*th column can be represented by (m_1, m_2, \ldots, m_L) . If $P_{m_1m_2...m_L}(N)$ is the probability of being in the configuration (m_1, m_2, \ldots, m_L) , then the transfer matrix is defined by

$$P_{n_1 n_2 \dots n_L}(N+1) = \sum_{m_1, \dots, m_L = 0, 1} \langle n_1, \dots, n_L | T | m_1, \dots, m_L \rangle P_{m_1 m_2 \dots m_L}(N),$$
(2)

where similar notation (n_1, \ldots, n_L) is used in the (N+1)th column. For the site percolation, we have

$$\langle n_1, \dots, n_L | T | m_1, \dots, m_L \rangle = \delta_{n_1 m_2} \dots \delta_{n_{L-1} m_L} (q \delta_{n_L 0} + p \delta_{n_L 1}) \quad \text{if } (m_1, \dots, m_L) \neq (0, \dots, 0), = \delta_{n_1 m_2} \dots \delta_{n_{L-1} m_L}, \delta_{n_L 0} \quad \text{if } (m_1, \dots, m_L) = (0, \dots, 0),$$
(3)

where p is the site occupation probability and q = 1 - p, and δ is the Kronecker delta.

For the bond percolation, we have

$$\langle n_1, \dots, n_L | T | m_1, \dots, m_L \rangle = \delta_{n_1 m_2} \dots \delta_{n_{L-1} m_L} [q_L^{m_1} \dots q_1^{m_L} \delta_{n_L 0} + (1 - q_L^{m_1} \dots q_1^{m_L}) \delta_{n_L 1}] \quad \text{if } (m_1, \dots, m_L) \neq (0, \dots, 0), = \delta_{n_1 m_2} \dots \delta_{n_{L-1} m_L}, \delta_{n_L 0} \quad \text{if } (m_1, \dots, m_L) = (0, \dots, 0),$$

$$(4)$$

where $q_i = 1 - p_i$ and p_i is the occupation probability of the *i*th-nearest neighbour bond.

Following Domb (1949), we label each configuration (m_1, \ldots, m_L) and (n_1, \ldots, n_L) of the Nth and (N+1)th columns by numbers m and n respectively, where m and n

are defined by

$$m = m_1 2^{L-1} + m_2 2^{L-2} + \ldots + m_{L-1} 2 + m_L, \tag{5}$$

$$n = n_1 2^{L-1} + n_2 2^{L-2} + \ldots + n_{L-1} 2 + n_L.$$
(6)

Since both (3) and (4) contain the factor $\delta_{n_1m_2} \dots \delta_{n_{L-1}m_L}$, the non-vanishing matrix elements of (3) and (4) can be found from the relation

$$n = 2(m - m_1 2^{L-1}) + n_L \tag{7}$$

where (5) and (6) have been used to obtain (7). Using the above labelling procedure, the transfer matrix $\langle n_1, \ldots, n_L | T | m_1, \ldots, m_L \rangle$ can be denoted by $T_{nm}^{(L)}$ and has a systematic duo-diagonal form (Domb 1949).

For site percolation, using (3) and (7), we find

(<i>m</i>)	= 0	1	2					2 ^{L-}	¹	12	L-1					2 ¹	-1	
	/ 1	0	0		0 0	0	0	0	0	q	0	0		0 0	0 0	0	0	
	0	0	0		0 0	0	0	0	0	р	0	0	• • •	0 0	0 0	0	0	1
	0	q	0	0	0	0	0	0	0	0	q	0	0	0	0 0	0	0	
	0	р	0	0	0	0	0	0	0	0	р	0	0	0	0 0	0	0	
	0	0	q	0	0	0	0	0	0	0	0	q	0 0	• • •	0 0	0	0	
	0	0	р	0	0	0	0	0	0	0	0	р	0 0		0 0	0	0	
	0	0	0	q	0 0		0	0	0	0	0	0	q 0	0	0	0	0	
$T_{nm}^{(L)} =$	0	0	0	р	0 0		0	0	0	0	0	0	p 0	0	0	0	0	. (8)
												, ,						
											1							
	0	0	0	0	0	0	q	0	0	0	0	0	0	0	0 q	0	0	
	0	0	0	0	0	0	р	0	0	0	0	0	0	0	0 p	0	0	
	0	0	0	0	0	0	0	q	0	0	0	0	0 0		0 0	q	0	1
	0	0	0	0	0	0	0	р	0	0	0	0	0 0	• • •	0 C	р	0	
	0	0	0	0	0 0		0	0			0	0	0 0	0	C	0	q	
	<i>i</i> 0	0	0	0	0 0		0	0	р	0	0	0	0 0	0	C	0	p	

If we define the function $A^{(L)}(\lambda, q)$ as

$$\det(T_{nm}^{(L)} - \lambda \delta_{nm}) \equiv (1 - \lambda) A^{(L)}(\lambda, q), \qquad (9)$$

then the largest non-trivial eigenvalue of $T_{nm}^{(L)}$ is given by the largest root $\lambda_m(q)$ of the equation $A^{(L)}(\lambda, q) = 0$. In the critical region, we fortunately do not have to find the exact expression of $\lambda_m(q)$. Since the critical point can be located from the condition $A^{(L)}(\lambda = 1, q_c) = 0$, where the correlation length ξ diverges, it will be shown in the appendix that if $A^{(L)}(1, q)$ has the form bq^K , where b is a constant and K is a positive integer, then the correlation length ξ , in the critical region, is given by

$$\xi(q) = x b^{-1} q^{-\kappa} \qquad \text{for small } q \tag{10}$$

where

$$x = \frac{\partial A^{(L)}(\lambda, q)}{\partial \lambda} \Big|_{\lambda = 1, q = 0}.$$
(11)

From (8) and (9), we can eliminate all the p's and q's in the right half of the determinant $A^{(L)}(1,q)$ by some manipulations. It can be verified that the following relation holds:

$$A^{(L)}(1,q) = qA^{(L-1)}(1,q).$$
(12)

Since $A^{(1)}(1, q) = -q$, we find $A^{(L)}(1, q) = -q^{L}$ and $q_{c} = 0$ ($p_{c} = 1$). The value of x of (11) can also be evaluated by a similar procedure and is found to be -1 for any finite L. From (10), we find, for small q, that $\xi = q^{-L}$ and $\nu = L$ (see Klein *et al* 1978). These are the exact results for any finite L.

In the case of bond percolation, $T_{nm}^{(L)}$ is also a duo-diagonal matrix of order 2^{L} . It is rather difficult to evaluate the determinant $A^{(L)}(1, q_1, \ldots, q_L)$ in the general case. However, when all the *L*th-nearest neighbour bonds have the same occupation probability, the exact critical behaviour can also be obtained by using a symmetric representation as will be shown in the next section.

3. Symmetric representation

Both for the site percolation and the bond percolation with all *L*th-nearest neighbour bonds having equal occupation probability, a symmetric representation can be used to find the exact critical behaviour. In this representation, we assume that all the configurations having the same number of sites *r* connecting to the first column have the same probability. We define $P_{\{m\},r}$, in the *N*th column, as

$$P_{\{m\},r}(N) \equiv P_{m_1...m_L}(N)$$
 for all $\sum_{i=1}^{L} m_i = r$ (13)

where r has the values 0, 1, ..., L. If we denote P_r as the total probability of all the configurations having r sites connecting to the first column, we have

$$P_{r}(N) \equiv \sum_{\substack{m_{1},\dots,m_{L}=0,1\\m_{1}+\dots+m_{L}=r}} P_{\{m\},r} = \binom{L}{r} P_{\{m\},r}.$$
(14)

Using the same definition of $P_s(N+1)$ for the (N+1)th column, from (2), we find

$$P_{s}(N+1) = \sum_{r=0}^{L} \sum_{\substack{n_{1},\dots,n_{L}=0,1\\n_{1}+\dots+n_{L}=s\\m_{1}\dots,m_{L}=0,1\\m_{1}+\dots+m_{L}=r}} \langle n_{1},\dots,n_{L} | T | m_{1},\dots,m_{L} \rangle {\binom{L}{r}} P_{r}(N)$$

$$\equiv \sum_{r=0}^{L} M_{sr}^{(L)} P_{r}(N)$$
(15)

where $M_{sr}^{(L)}$ is thus the reduced transfer matrix in the symmetric representation having dimensionality $(L+1) \times (L+1)$.

For the case of site percolation, substituting (3) into (15), after some manipulations, we find

$$M_{sr}^{(L)} = \delta_{sr} \quad \text{if } r = 0,$$

= $\delta_{s+1,r} rq/L + \delta_{sr} [rp/L + (L-r)q/L]$
+ $\delta_{s-1,r} (L-r)p/L \quad \text{if } r = 1, 2, ..., L.$ (16)

Again, we define $A_{sym}^{(L)}(\lambda, q)$ as

$$\det(M_{sr}^{(L)} - \lambda \delta_{sr}) \equiv (1 - \lambda) A_{sym}^{(L)}(\lambda, q).$$
(17)

From (16) and (17), $A_{sym}^{(L)}(1, q)$ can be evaluated exactly and is found to be

$$A_{\rm sym}^{(L)}(1,q) = F(L)q^{L}$$
(18)

with

$$F(L) = (-1)^{L} (L-1)! / L^{(L-1)}.$$
(19)

It can also be shown that the value of x of (11) is exactly equal to F(L) of (19). Using (10) and (11), we obtain the same results as in the last section; namely, for small q, $\xi = q^{-L}$ and $\nu = L$.

In the case of bond percolation, if we assume that all the Lth-nearest neighbour bonds have equal occupation probability, from (4) and (15), with some manipulations, we find

$$M_{sr}^{(L)} = \delta_{sr} \quad \text{if } r = 0,$$

= $\delta_{s+1,r} \frac{rq'}{L} + \delta_{sr} \left(\frac{r}{L} (1-q') + \frac{(L-r)}{L} q' \right)$
+ $\delta_{s-1,r} \frac{(L-r)}{L} (1-q') \quad \text{if } r = 1, 2, ..., L.$ (20)

Substituting (20) into (17), $A_{sym}^{(L)}(1,q)$ can again be evaluated exactly and is found to have the form

$$A_{\rm sym}^{(L)}(1,q) = F(L)q^{L(L+1)/2},$$
(21)

where F(L) is given by (19). In this case the value of x of (11) is again found to be F(L) of (19). From (10) and (11), we obtain, for small q, that $\xi = q^{-L(L+1)/2}$ and $\nu = L(L+1)/2$.

In summary, we have used the transfer-matrix method to find the exact expressions for the correlation length in the critical region for both one-dimensional site and bond percolation systems with bonds connecting *L*th-nearest neighbours. In the case of site percolation, the correlation length exponent ν is found to be *L*, consistent with the results obtained by using the generating function method. In the case of bond percolation with all the *L*th-nearest neighbour bonds having equal occupation probability, ν is found to be L(L+1)/2. This confirms the previous prediction by Zhang and Shen (1982).

Recently, we have used the infinitely large cell to cell renormalisation group method proposed by Reynolds *et al* (1980) to treat the bond percolation case (Li *et al*). It is also found that $\nu = L(L+1)/2$, consistent with the results obtained here by using the transfer-matrix method.

Acknowledgment

The authors would like to thank P M Lam for a careful reading of the manuscript.

Appendix

For any transfer matrix $T_{nm}(q)$ of order (J+1), the largest non-trivial eigenvalue is given by the largest root of the equation $A(\lambda, q) = 0$, where $A(\lambda, q)$, a determinant

of order J, is defined by

$$\det(T_{nm} - \lambda \delta_{nm}) \equiv (1 - \lambda) A(\lambda, q). \tag{A1}$$

In this appendix, we will show that if A(1, q) has the form bq^{K} , where b is a constant and K is a positive integer, then the correlation length in the critical region (small q) has the form

$$\xi(q) = xb^{-1}q^{-K},$$
 (A2)

where

$$x = \frac{\partial A(\lambda, q)}{\partial \lambda} \Big|_{\lambda=1, q=0}.$$
 (A3)

Since $A(\lambda, q)$ is a polynomial of λ of order J, we can write

$$A(\lambda, q) = \sum_{n=0}^{J} a_n(q) \lambda^n.$$
(A4)

If $\lambda_m(q)$ is the largest root of the equation $A(\lambda, q) = 0$, then $\lambda_m(q)$ must satisfy $\lambda_m(0) = 1$ and

$$A(\lambda_{\rm m}(q),q) = \sum_{n=0}^{J} a_n(q) \lambda_{\rm m}^n(q) \equiv 0.$$
 (A5)

Expanding $\lambda_m(q)$ in the vicinity of the critical point q = 0, we have

$$\lambda_{\rm m}(q) = 1 + \lambda_{\rm m}'(0)q + \frac{1}{2}\lambda_{\rm m}''(0)q^2 + \ldots + \frac{1}{n!}\lambda_{\rm m}^{(n)}(0)q^n + \ldots$$
(A6)

Taking the total derivatives on both sides of (A5), we have

$$d^n A/d^n q \equiv 0$$
 for all integer *n*. (A7)

When n = 1, we find

$$\sum_{n=0}^{J} \left[a'_{n}(q)\lambda_{m}^{n}(q) + na_{n}(q)\lambda_{m}^{n-1}(q)\lambda'_{m}(q) \right] \equiv 0.$$
 (A8)

Putting q = 0, $\lambda_m(0) = 1$, and using the relation $\sum_{n=0}^{J} a_n(q) = A(1, q) = bq^{\kappa}$, (A8) gives

$$\lambda'_{m}(0) = -x^{-1}bK$$
 if $K = 1$,
= 0 if $K > 1$, (A9)

where

$$x = \sum_{n=1}^{J} n a_n(0) \equiv \frac{\partial A(\lambda, q)}{\partial \lambda} \Big|_{\lambda = 1, q = 0}.$$
 (A10)

If K > 1, we can take higher derivatives on both sides of (A8) and put q = 0, $\lambda_m(0) = 1$ afterwards. In general, we find the following results:

$$\lambda_{m}^{(n)}(0) = 0$$
 if $n < K$,
= $-x^{-1}bK!$ if $n = K$. (A11)

From (A6) and (A11), we obtain

$$\lambda_{\rm m}(q) = 1 - x^{-1} b q^{\rm K} + {\rm O}(q^{\rm K+1}). \tag{A12}$$

Substituting (A12) into (1), we finally arrive at (A2) and (A3).

References

Derrida B and Vannimenus J 1980 J. Physique Lett. **41** L473-6 Domb C 1949 Proc. R. Soc. A **196** 36-51 Essam J W 1980 Rep. Prog. Phys. **43** 833-912 Klein W, Stanley H E, Redner S and Reynolds P J 1978 J. Phys. A: Math. Gen. **11** L17-22 Li T C, Zhang Z Q and Pu F C unpublished Reynolds P J, Stanley H E and Klein W 1980 Phys. Rev. B **21** 1223-45 Stauffer D 1979 Phys. Rep. **54** 1-74 Zhang Z Q and Shen J L 1982 J. Phys. A: Math. Gen. **15** L363-8