One-dimensional percolation problems with further neighbour bonds-transfer-matrix approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16125
(http://iopscience.iop.org/0305-4470/16/1/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:13

Please note that terms and conditions apply.

One-dimensional percolation problem with further neighbour bonds-transfer-matrix approach

Z Q Zhang, F C Pu and T C Li
Institute of Physics, Chinese Academy of Sciences, Beijing, China

Received 15 June 1982

Abstract

The transfer-matrix method is used to find the exact expressions for the correlation length in the critical region for both one-dimensional site and bond percolation problems with bonds connecting L th-nearest neighbours (for any finite L). For the site percolation, the correlation length exponent ν is found to be L, consistent with the result obtained from the generating function method. For the bond percolation, we find $\nu=$ $L(L+1) / 2$

1. Introduction

In the percolation problem, the one-dimensional system is one of the few cases where exact solutions can be found (for reviews see Stauffer 1979 and Essam 1980). Onedimensional site percolation with bonds connecting L th-nearest neighbour sites has been solved by the generating function method (Klein et al 1978). Although the critical occupation probability p_{c} is trivial in one dimension (p_{c} is always equal to 1), the critical exponents are found to be L dependent. In particular, the correlation length exponent ν is found to be equal to L. Such a 'bond range' dependence of the critical behaviour is closely related to the corresponding 'thermal' problem with multi-spin interactions (Klein et al 1978).

Recently, the transfer-matrix method has been used to find the exact critical behaviour for both one-dimensional site and bond percolation systems with further neighbour bonds (Zhang and Shen 1982). In that work, the authors showed that the transfer-matrix method gives the consistent result $\nu=L$ in the site percolation case. For the bond percolation, much richer critical behaviour was found. If all the L th-nearest neighbour bonds have equal occupation probability, ν is found to be $L(L+1) / 2$. However, in that work, the calculations are only done for small L (L up to 3); no proof has been given for the case of general L. In this work, we give a systematic extension of the transfer-matrix method to one-dimensional percolation systems from previous low L values to any finite L.

2. Transfer matrix

Consider a linear chain with bonds connecting L th-nearest neighbours (cf figure 1). Following the method used by Zhang and Shen (1982), we divide the chain into overlapping columns each containing L sites. If we take the sites $1,2, \ldots, L-1$ and

Figure 1. A linear chain with bonds connecting 3rd-nearest neighbours ($L=3$). Sites $(1,2,3)$ and $(2,3,4)$ are taken to be the N th and ($N+1$)th columns respectively.
L as the N th column, then the $(N+1)$ th column contains sites $2,3, \ldots, L$ and $L+1$. Since each site can be either connected or disconnected to the first column, there are 2^{L} configurations in each column. The transfer matrix transfers the probability distribution of various configurations in the N th column to the $(N+1)$ th column. The correlation length ξ is related to the largest non-trivial eigenvalue λ_{m} of the transfer matrix by the relation (Derrida and Vannimenus 1980)

$$
\begin{equation*}
\xi=-1 / \ln \lambda_{\mathrm{m}} \tag{1}
\end{equation*}
$$

From (1), the critical point and the correlation length exponent ν can be found (Zhang and Shen 1982).

To each i th site of the N th column we assign a value m_{i} which has the value 1 or 0 depending on whether the i th site is connected or disconnected to the first column. So, any configuration in the N th column can be represented by ($m_{1}, m_{2}, \ldots, m_{L}$). If $P_{m_{1} m_{2} \ldots m_{L}}(N)$ is the probability of being in the configuration $\left(m_{1}, m_{2}, \ldots, m_{L}\right)$, then the transfer matrix is defined by
$P_{n_{1} n_{2} \ldots n_{L}}(N+1)=\sum_{m_{1}, \ldots, m_{L}=0,1}\left\langle n_{1}, \ldots, n_{L}\right| T\left|m_{1}, \ldots, m_{L}\right\rangle P_{m_{1} m_{2} \ldots m_{L}}(N)$,
where similar notation $\left(n_{1}, \ldots, n_{L}\right)$ is used in the $(N+1)$ th column. For the site percolation, we have

$$
\begin{align*}
& \left\langle n_{1}, \ldots, n_{L}\right|
\end{aligned} \begin{aligned}
& \left.T m_{1}, \ldots, m_{L}\right\rangle \\
& \\
& =\delta_{n_{1} m_{2}} \ldots \delta_{n_{L-1} m_{L}}\left(q \delta_{n_{L} 0}+p \delta_{n_{L} 1}\right) \quad \text { if }\left(m_{1}, \ldots, m_{L}\right) \neq(0, \ldots, 0), \tag{3}\\
& =
\end{align*} \delta_{n_{1} m_{2}} \ldots \delta_{n_{L-1} m_{L}}, \delta_{n_{L} 0} \quad \text { if }\left(m_{1}, \ldots, m_{L}\right)=(0, \ldots, 0), ~ \$
$$

where p is the site occupation probability and $q=1-p$, and δ is the Kronecker delta.
For the bond percolation, we have

$$
\begin{align*}
\left\langle n_{1}, \ldots, n_{L}\right| & T\left|m_{1}, \ldots, m_{L}\right\rangle \\
= & \delta_{n_{1} m_{2}} \ldots \delta_{n_{L-1} m_{L}}\left[q_{L}^{m_{1}} \ldots q_{1}^{m_{L}} \delta_{n_{L} 0}\right. \\
& \left.+\left(1-q_{L}^{m_{1}} \ldots q_{1}^{m_{L}}\right) \delta_{n_{L} 1}\right] \quad \text { if }\left(m_{1}, \ldots, m_{L}\right) \neq(0, \ldots, 0), \\
= & \delta_{n_{1} m_{2}} \ldots \delta_{n_{L-1} m_{L}}, \delta_{n_{L} 0} \quad \text { if }\left(m_{1}, \ldots, m_{L}\right)=(0, \ldots, 0), \tag{4}
\end{align*}
$$

where $q_{i}=1-p_{i}$ and p_{i} is the occupation probability of the i th-nearest neighbour bond.
Following Domb (1949), we label each configuration (m_{1}, \ldots, m_{L}) and (n_{1}, \ldots, n_{L}) of the N th and $(N+1)$ th columns by numbers m and n respectively, where m and n
are defined by

$$
\begin{align*}
& m=m_{1} 2^{L-1}+m_{2} 2^{L-2}+\ldots+m_{L-1} 2+m_{L} \tag{5}\\
& n=n_{1} 2^{L-1}+n_{2} 2^{L-2}+\ldots+n_{L-1} 2+n_{L} \tag{6}
\end{align*}
$$

Since both (3) and (4) contain the factor $\delta_{n_{1} m_{2}} \ldots \delta_{n_{L-1} m_{L}}$, the non-vanishing matrix elements of (3) and (4) can be found from the relation

$$
\begin{equation*}
n=2\left(m-m_{1} 2^{L-1}\right)+n_{L} \tag{7}
\end{equation*}
$$

where (5) and (6) have been used to obtain (7). Using the above labelling procedure, the transfer matrix $\left\langle n_{1}, \ldots, n_{L}\right| T\left|m_{1}, \ldots, m_{L}\right\rangle$ can be denoted by $T_{n m}^{(L)}$ and has a systematic duo-diagonal form (Domb 1949).

For site percolation, using (3) and (7), we find

If we define the function $A^{(L)}(\lambda, q)$ as

$$
\begin{equation*}
\operatorname{det}\left(T_{n m}^{(L)}-\lambda \delta_{n m}\right) \equiv(1-\lambda) A^{(L)}(\lambda, q) \tag{9}
\end{equation*}
$$

then the largest non-trivial eigenvalue of $T_{n m}^{(L)}$ is given by the largest root $\lambda_{\mathrm{m}}(q)$ of the equation $A^{(L)}(\lambda, q)=0$. In the critical region, we fortunately do not have to find the exact expression of $\lambda_{\mathrm{m}}(q)$. Since the critical point can be located from the condition $A^{(L)}\left(\lambda=1, q_{c}\right)=0$, where the correlation length ξ diyerges, it will be shown in the appendix that if $A^{(L)}(1, q)$ has the form $b q^{K}$, where b is a constant and K is a positive integer, then the correlation length ξ, in the critical region, is given by

$$
\begin{equation*}
\xi(q)=x b^{-1} q^{-K} \quad \text { for small } q \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\left.\frac{\partial A^{(L)}(\lambda, q)}{\partial \lambda}\right|_{\lambda=1, q=0} . \tag{11}
\end{equation*}
$$

From (8) and (9), we can eliminate all the p 's and q 's in the right half of the determinant $A^{(L)}(1, q)$ by some manipulations. It can be verified that the following relation holds:

$$
\begin{equation*}
A^{(L)}(1, q)=q A^{(L-1)}(1, q) . \tag{12}
\end{equation*}
$$

Since $A^{(1)}(1, q)=-q$, we find $A^{(L)}(1, q)=-q^{L}$ and $q_{c}=0\left(p_{c}=1\right)$. The value of x of (11) can also be evaluated by a similar procedure and is found to be -1 for any finite L. From (10), we find, for small q, that $\xi=q^{-L}$ and $\nu=L$ (see Klein et al 1978). These are the exact results for any finite L.

In the case of bond percolation, $T_{n m}^{(L)}$ is also a duo-diagonal matrix of order 2^{L}. It is rather difficult to evaluate the determinant $A^{(L)}\left(1, q_{1}, \ldots, q_{L}\right)$ in the general case. However, when all the L th-nearest neighbour bonds have the same occupation probability, the exact critical behaviour can also be obtained by using a symmetric representation as will be shown in the next section.

3. Symmetric representation

Both for the site percolation and the bond percolation with all L th-nearest neighbour bonds having equal occupation probability, a symmetric representation can be used to find the exact critical behaviour. In this representation, we assume that all the configurations having the same number of sites r connecting to the first column have the same probability. We define $P_{\{m\}, r}$, in the N th column, as

$$
\begin{equation*}
P_{\{m\}, r}(N) \equiv P_{m_{1} \ldots m_{L}}(N) \quad \text { for all } \sum_{i=1}^{L} m_{i}=r \tag{13}
\end{equation*}
$$

where r has the values $0,1, \ldots, L$. If we denote P_{r} as the total probability of all the configurations having r sites connecting to the first column, we have

$$
\begin{equation*}
P_{r}(\boldsymbol{N}) \equiv \sum_{\substack{m_{1}, \ldots, m_{L}=0.1 \\ m_{1}+\ldots, m_{L}=r}} P_{\{m\}, r}=\binom{L}{r} P_{\{m\}, r} \tag{14}
\end{equation*}
$$

Using the same definition of $P_{s}(N+1)$ for the $(N+1)$ th column, from (2), we find

$$
\begin{align*}
P_{s}(\boldsymbol{N}+1) & =\sum_{\substack{r=0 \\
n_{1}, \ldots, n_{L}=0,1 \\
n_{1}+\ldots+L_{L}=s \\
m_{1}, \ldots, m_{L}=0,1 \\
m_{1}+\ldots+m_{L}=r}}\left\langle n_{1}, \ldots, n_{L}\right| T\left|m_{1}, \ldots, m_{L}\right\rangle\binom{ L}{r} P_{r}(N) \\
& \equiv \sum_{r=0}^{L} M_{s r}^{(L)} P_{r}(N) \tag{15}
\end{align*}
$$

where $M_{s r}^{(L)}$ is thus the reduced transfer matrix in the symmetric representation having dimensionality $(L+1) \times(L+1)$.

For the case of site percolation, substituting (3) into (15), after some manipulations, we find

$$
\begin{align*}
M_{s r}^{(L)}= & \delta_{s r} \quad \text { if } r=0, \\
= & \delta_{s+1, r} r q / L+\delta_{s r}[r p / L+(L-r) q / L] \\
& +\delta_{s-1, r}(L-r) p / L \quad \text { if } r=1,2, \ldots, L . \tag{16}
\end{align*}
$$

Again, we define $A_{\text {sym }}^{(L)}(\lambda, q)$ as

$$
\begin{equation*}
\operatorname{det}\left(M_{s r}^{(L)}-\lambda \delta_{s r}\right) \equiv(1-\lambda) A_{\mathrm{sym}}^{(L)}(\lambda, q) . \tag{17}
\end{equation*}
$$

From (16) and (17), $A_{\mathrm{sym}}^{(L)}(1, q)$ can be evaluated exactly and is found to be

$$
\begin{equation*}
A_{\text {sym }}^{(L)}(1, q)=F(L) q^{L} \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
F(L)=(-1)^{L}(L-1)!/ L^{(L-1)} . \tag{19}
\end{equation*}
$$

It can also be shown that the value of x of (11) is exactly equal to $F(L)$ of (19). Using (10) and (11), we obtain the same results as in the last section; namely, for small q, $\xi=q^{-L}$ and $\nu=L$.

In the case of bond percolation, if we assume that all the L th-nearest neighbour bonds have equal occupation probability, from (4) and (15), with some manipulations, we find

$$
\begin{align*}
M_{s r}^{(L)}= & \delta_{s r} \quad \text { if } r=0, \\
= & \delta_{s+1, r} \frac{r q^{r}}{L}+\delta_{s r}\left(\frac{r}{L}\left(1-q^{r}\right)+\frac{(L-r)}{L} q^{r}\right) \\
& +\delta_{s-1, r} \frac{(L-r)}{L}\left(1-q^{r}\right) \quad \text { if } r=1,2, \ldots, L . \tag{20}
\end{align*}
$$

Substituting (20) into (17), $\boldsymbol{A}_{\text {sym }}^{(L)}(1, q)$ can again be evaluated exactly and is found to have the form

$$
\begin{equation*}
A_{\mathrm{sym}}^{(L)}(1, q)=F(L) q^{L(L+1) / 2}, \tag{21}
\end{equation*}
$$

where $F(L)$ is given by (19). In this case the value of x of (11) is again found to be $F(L)$ of (19). From (10) and (11), we obtain, for small q, that $\xi=q^{-L(L+1) / 2}$ and $\nu=L(L+1) / 2$.

In summary, we have used the transfer-matrix method to find the exact expressions for the correlation length in the critical region for both one-dimensional site and bond percolation systems with bonds connecting L th-nearest neighbours. In the case of site percolation, the correlation length exponent ν is found to be L, consistent with the results obtained by using the generating function method. In the case of bond percolation with all the L th-nearest neighbour bonds having equal occupation probability, ν is found to be $L(L+1) / 2$. This confirms the previous prediction by Zhang and Shen (1982).

Recently, we have used the infinitely large cell to cell renormalisation group method proposed by Reynolds et al (1980) to treat the bond percolation case (Li et al). It is also found that $\nu=L(L+1) / 2$, consistent with the results obtained here by using the transfer-matrix method.

Acknowledgment

The authors would like to thank P M Lam for a careful reading of the manuscript.

Appendix

For any transfer matrix $T_{n m}(q)$ of order $(J+1)$, the largest non-trivial eigenvalue is given by the largest root of the equation $A(\lambda, q)=0$, where $A(\lambda, q)$, a determinant
of order J, is defined by

$$
\begin{equation*}
\operatorname{det}\left(T_{n m}-\lambda \delta_{n m}\right) \equiv(1-\lambda) A(\lambda, q) \tag{A1}
\end{equation*}
$$

In this appendix, we will show that if $A(1, q)$ has the form $b q^{K}$, where b is a constant and K is a positive integer, then the correlation length in the critical region (small q) has the form

$$
\begin{equation*}
\xi(q)=x b^{-1} q^{-K} \tag{A2}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\left.\frac{\partial A(\lambda, q)}{\partial \lambda}\right|_{\lambda=1, q=0} . \tag{A3}
\end{equation*}
$$

Since $A(\lambda, q)$ is a polynomial of λ of order J, we can write

$$
\begin{equation*}
A(\lambda, q)=\sum_{n=0}^{J} a_{n}(q) \lambda^{n} \tag{A4}
\end{equation*}
$$

If $\lambda_{\mathrm{m}}(q)$ is the largest root of the equation $\boldsymbol{A}(\lambda, q)=0$, then $\lambda_{\mathrm{m}}(q)$ must satisfy $\lambda_{\mathrm{m}}(0)=1$ and

$$
\begin{equation*}
A\left(\lambda_{\mathrm{m}}(q), q\right)=\sum_{n=0}^{J} a_{n}(q) \lambda_{\mathrm{m}}^{n}(q) \equiv 0 \tag{A5}
\end{equation*}
$$

Expanding $\lambda_{\mathrm{m}}(q)$ in the vicinity of the critical point $q=0$, we have

$$
\begin{equation*}
\lambda_{\mathrm{m}}(q)=1+\lambda_{\mathrm{m}}^{\prime}(0) q+\frac{1}{2} \lambda_{\mathrm{m}}^{\prime \prime}(0) q^{2}+\ldots+\frac{1}{n!} \lambda_{\mathrm{m}}^{(n)}(0) q^{n}+\ldots \tag{A6}
\end{equation*}
$$

Taking the total derivatives on both sides of (A5), we have

$$
\begin{equation*}
\mathrm{d}^{n} A / \mathrm{d}^{n} q \equiv 0 \quad \text { for all integer } n . \tag{A7}
\end{equation*}
$$

When $n=1$, we find

$$
\begin{equation*}
\sum_{n=0}^{J}\left[a_{n}^{\prime}(q) \lambda_{\mathrm{m}}^{n}(q)+n a_{n}(q) \lambda_{\mathrm{m}}^{n-1}(q) \lambda_{\mathrm{m}}^{\prime}(q)\right] \equiv 0 \tag{A8}
\end{equation*}
$$

Putting $q=0, \lambda_{\mathrm{m}}(0)=1$, and using the relation $\sum_{n=0}^{J} a_{n}(q)=A(1, q)=b q^{K}$, (A8) gives

$$
\begin{align*}
\lambda_{\mathrm{m}}^{\prime}(0) & =-x^{-1} b K & & \text { if } K=1, \\
& =0 & & \text { if } K>1, \tag{A9}
\end{align*}
$$

where

$$
\begin{equation*}
x=\left.\sum_{n=1}^{J} n a_{n}(0) \equiv \frac{\partial \boldsymbol{A}(\lambda, q)}{\partial \lambda}\right|_{\lambda=1, q=0} . \tag{A10}
\end{equation*}
$$

If $K>1$, we can take higher derivatives on both sides of (A8) and put $q=0, \lambda_{\mathrm{m}}(0)=1$ afterwards. In general, we find the following results:

$$
\begin{align*}
\lambda_{\mathrm{m}}^{(n)}(0) & =0 & & \text { if } n<K, \\
& =-x^{-1} b K! & & \text { if } n=K . \tag{A11}
\end{align*}
$$

From (A6) and (A11), we obtain

$$
\begin{equation*}
\lambda_{\mathrm{m}}(q)=1-x^{-1} b q^{K}+\mathrm{O}\left(q^{K+1}\right) \tag{A12}
\end{equation*}
$$

Substituting (A12) into (1), we finally arrive at (A2) and (A3).

References

Derrida B and Vannimenus J 1980 J. Physique Lett. 41 L473-6
Domb C 1949 Proc. R. Soc. A 196 36-51
Essam J W 1980 Rep. Prog. Phys. 43 833-912
Klein W, Stanley H E, Redner S and Reynolds P J 1978 J. Phys. A: Math. Gen. 11 L17-22
Li T C, Zhang Z Q and Pu F C unpublished
Reynolds P J, Stanley H E and Klein W 1980 Phys. Rev. B 21 1223-45
Stauffer D 1979 Phys. Rep. 54 1-74
Zhang Z Q and Shen J L 1982 J. Phys. A: Math. Gen. 15 L363-8

