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Received 15 June 1982 

Abstract. The transfer-matrix method is used to find the exact expressions for the correla- 
tion length in the critical region for both one-dimensional site and bond percolation 
problems with bonds connecting Lth-nearest neighbours (for any finite 15). For the site 
percolation, the correlation length exponent Y is found to be L,  consistent with the result 
obtained from the generating function method. For the bond percolation, we find U = 

L(L+1) /2 .  

1. Introduction 

In the percolation problem, the one-dimensional system is one of the few cases where 
exact solutions can be found (for reviews see Stauffer 1979 and Essam 1980). One- 
dimensional site percolation with bonds connecting Lth-nearest neighbour sites has 
been solved by the generating function method (Klein et  a1 1978). Although the 
critical occupation probability p c  is trivial in one dimension ( p ,  is always equal to l), 
the critical exponents are found to be L dependent. In particular, the correlation 
length exponent v is found to be equal to L. Such a ‘bond range’ dependence of the 
critical behaviour is closely related to the corresponding ‘thermal’ problem with 
multi-spin interactions (Klein et a1 1978). 

Recently, the transfer-matrix method has been used to find the exact critical 
behaviour for both one-dimensional site and bond percolation systems with further 
neighbour bonds (Zhang and Shen 1982). In that work, the authors showed that the 
transfer-matrix method gives the consistent result v = L in the site percolation case. 
For the bond percolation, much richer critical behaviour was found. If all the 
Lth-nearest neighbour bonds have equal occupation probability, v is found to be 
L(L + 1)/2.  However, in that work, the calculations are only done for small L (L up 
to 3); no proof has been given for the case of general L.  In this work, we give a 
systematic extension of the transfer-matrix method to one-dimensional percolation 
systems from previous low L values to any finite L. 

2. Transfer matrix 

Consider a linear chain with bonds connecting Lth-nearest neighbours (cf figure 1). 
Following the method used by Zhang and Shen (1982), we divide the chain into 
overlapping columns each containing L sites. If we take the sites 1, 2, . . . , L - 1 and 
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Figure 1. A linear chain with bonds connecting 3rd-nearest neighbours (L = 3). Sites 
(1, 2, 3) and (2, 3 , 4 )  are taken to be the N t h  and ( N  + 1)th columns respectively. 

L as the Nth  column, then the ( N  + 1)th column contains sites 2 ,3 ,  . . . , L and L + 1. 
Since each site can be either connected or disconnected to the first column, there are 
2L configurations in each column. The transfer matrix transfers the probability distribu- 
tion of various configurations in the N t h  column to the ( N + l ) t h  column. The 
correlation length 5 is related to the largest non-trivial eigenvalue A, of the transfer 
matrix by the relation (Derrida and Vannimenus 1980) 

6 = -l/h A,. (1) 

From ( l ) ,  the critical point and the correlation length exponent v can be found (Zhang 
and Shen 1982). 

To each ith site of the Nth  column we assign a value mi which has the value 1 or 
0 depending on whether the ith site is connected or disconnected to the first column. 
So, any configuration in the Nth  column can be represented by ( m l ,  m 2 , .  . . , m L ) .  If 
P m l m 2 . . . m L ( N )  is the probability of being in the configuration (ml ,  m 2 , .  . . , mL), then 
the transfer matrix is defined by 

where similar notation ( n l , .  . . , n L )  is used in the ( N  + 1)th column. For the site 
percolation, we have 

where p is the site occupation probability and q = 1 - p ,  and S is the Kronecker delta. 

(n l ,  . . . , nLiTlml,. . . , m d  

For the bond percolation, we have 

[qL" . - q Y L 8 n L 0  - 8 n l m 2 . .  . S n L - l m L  

- - S n l m 2  * S n L - l m L )  SnLO 

- 

+(1 -qL" * .  . qYL)8flL11 if (ml ,  . . . , mL) # (0,  . . . , 0), 

if (ml ,  . . . , mr) = (0 , .  . . , 0), (4) 

where q1 = 1 - pI and pi is the occupation probability of the i th-nearest neighbour bond, 
. . . , n r )  

of the Nth  and ( N  + 11th columns by numbers m and n respectively, where m and II 
Following Domb (1949), we label each configuration ( m  1, . . . , mL) and (n  
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p;= 

are defined by 

m =m12L-'+m22L-2+. . .+mL-12+mL, 

n = n12L-' + n22 L-2+ .  . . + nL-'2 + nL. 

o o o p o o  , , ,  o o o o o o p o o  . . .  0 0 0  - (8) . . .  
. . .  

0 0 0 0  , . .  o o q o o o o o o  . . .  o o q o o  

Since both (3) and (4) contain the factor S,,,, . . . SnL-lmL, the non-vanishing matrix 
elements of (3) and (4) can be found from the relation 

(7) 
where (5) and (6 )  have been used to obtain (7). Using the above labelling procedure, 
the transfer matrix ( n l , .  . . , nL/Tlml , .  . . , mL) can be denoted by TL? and has a 
systematic duo-diagonal form (Domb 1949). 

n = 2(m - m12L- ' )  + nL 

For site percolation, using (3) and (7), we find 
2L- l -1 2L - l  

1 0 0  . . .  o o o o o o q o o  . . .  0 0 0 0 0 0  
0 0 0  . . .  o o o o o o p o o  . . .  0 0 0 0 0 0  
o q o o  . . .  o o o o o o q o o  . . .  0 0 0 0 0  
o p o o  . . .  o o o o o o p o o  . . .  0 0 0 0 0  
o o q o o  . . .  o o o o o o q o o  . . .  0 0 0 0  
o o p o o  . . .  o o o o o o p o o  . . .  0 0 0 0  
o o o q o o  . . .  o o o o o o q o o  . . .  0 0 0  I (m)= 0 1 2 . . .  . . .  2 L - 1 '  

0 0 0 0  , . .  O O p O O O O O O  . . .  o o p o o  
0 0 0 0 0  , . .  o o q o o o o o o  . I .  o o q o  

0 0 0 0 0 0  . . .  o o q o o o o o o  . . .  o o q  
0 0 0 0 0 0  . . ,  o o p o o o o o o  . . .  o o p l  

0 0 0 0 0  . . .  o o p o o o o o o  . . .  0 0 P 0' 

det(TL? -AS,,,,)=(l -A)A'L'(A,q) ,  (9) 

If we define the function A'L'(h, q )  as 

then the largest non-trivial eigenvalue of T!,? is given by the largest root h,(q) of 
the equation q )  = 0. In the critical region, we fortunately do not have to find 
the exact expression of h,(q). Since the critical point can be located from the condition 
A'L'(A = 1,  qc) = 0 ,  where the correlation length 6 diverges, it will be shown in the 
appendix that if A'L'(l, q )  has the form 6qK, where b is a constant and K is a positive 
integer, then the correlation length 8, in the critical region, is given by 

[ ( q ) = x b - ' q - K  for small q (10) 
where 

From (8) and (91, we can eliminate all the p ' s  and q's  in the right half of the determinant 
A'L'( 1 , q )  by some manipulations. It can be verified that the following relation holds: 

(12) A'L'(l ,  q )  = qA'L-l'(l, q) .  
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Since A“’(1, q )  = -4, we find A‘L’(l, q )  = -qL and qc= 0 ( p c  = 1). The value of x of 
(11) can also be evaluated by a similar procedure and is found to be -1 for any finite 
L. From ( lo) ,  we find, for small q, that 6 = q-= and Y = L (see Klein et al 1978). 
These are the exact results for any finite L. 

In the case of bond percolation, T!,? is also a duo-diagonal matrix of order 2=. 
It is rather difficult to evaluate the determinant A‘=’(l, q l ,  . , . , qL) in the general 
case. However, when all the Lth-nearest neighbour bonds have the same occupation 
probability, the exact critical behaviour can also be obtained by using a symmetric 
representation as will be shown in the next section. 

3. Symmetric representation 

Both for the site percolation and the bond percolation with all Lth-nearest neighbour 
bonds having equal occupation probability, a symmetric representation can be used 
to find the exact critical behaviour. In this representation, we assume that all the 
configurations having the same number of sites r connecting to the first column have 
the same probability. We define P{,,,,, in the Nth  column, as 

where r has the values 0, 1, . . . , L. If we denote Pr as the total probability of all the 
configurations having r sites connecting to the first column, we have 

m l +  ...+ m L = r  

Using the same definition of P,(N + 1) for the ( N  + 1)th column, from (2), we find 

n l+  ...+ n L = s  
m l ,  ..., mr=O, l  

m ,+  ...+ m L = r  

L 

3 1 Mb:’P,(N) 
r = O  

where Mi:’ is thus the reduced transfer matrix in the symmetric representation having 
dimensionality ( L  + 1) x ( L  + 1). 

For the case of site percolation, substituting (3) into (15), after some manipulations, 
we find 

Mi:’ = 6,, if r = 0, 

Again, we define Ak)A(A, q )  as 
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From (16) and (17), A$A(l, q )  can be evaluated exactly and is found to be 

AAtA(1, q )  = F ( L ) q L  
with 

F ( L )  = ( - l ) L ( L  - l)!/L(L-ll. 

It can also be shown that the value of x of (11) is exactly equal to F ( L )  of (19). Using 
(10) and ( l l) ,  we obtain the same results as in the last section; namely, for small q, 
[ = q - L  and v=L. 

In the case of bond percolation, if we assume that all the Lth-nearest neighbour 
bonds have equal occupation probability, from (4) and (15), with some manipulations, 
we find 

M::’ =a,, if r = 0, 

(20) 

Substituting (20) into (17), A:FA(l, q )  can again be evaluated exactly and is found to 
have the form 

(21) 

where F ( L )  is given by (19). In this case the value of x of (11) is again found to be 
F ( L )  of (19). From (10) and ( l l ) ,  we obtain, for small q, that [=q-L‘L+1)’2 and 
v = L ( L  + 1)/2.  

In summary, we have used the transfer-matrix method to  find the exact expressions 
for the correlation length in the critical region for both one-dimensional site and bond 
percolation systems with bonds connecting Lth-nearest neighbours. In the case of 
site percolation, the correlation length exponent Y is found to be L,  consistent with 
the results obtained by using the generating function method. In the case of bond 
percolation with all the Lth-nearest neighbour bonds having equal occupation proba- 
bility, v is found to be L ( L  + 1)/2.  This confirms the previous prediction by Zhang 
and Shen (1982). 

Recently, we have used the infinitely large cell to cell renormalisation group method 
proposed by Reynolds et a1 (1980) to treat the bond percolation case (Li et a l ) .  It is 
also found that v = L ( L  t 1)/2, consistent with the results obtained here by using the 
transfer-matrix method. 

( L  - r )  
+ as-i,r--- ( 1  -4’)  L 

if r = 1 , 2  , . . . ,  L. 

L (  L + I I ‘ 2  4 k A ( L  4 )  = F ( L ) q  

Acknowledgment 

The authors would like to thank P M Lam for a careful reading of the manuscript. 

Appendix 

For any transfer matrix T,,,(q) of order (J  + l ) ,  the largest non-trivial eigenvalue is 
given by the largest root of the equation A ( h ,  q )  = 0, where A ( h ,  q ) ,  a determinant 
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of order J,  is defined by 

det(Tn, --A8",,,)=(1 -A)A(A, 4 ) .  ( A l )  

In this appendix, we will show that if A(1, q )  has the form bqK, where b is a constant 
and K is a positive integer, then the correlation length in the critical region (small q )  
has the form 

[ ( q )  =xb-'q-", (A21 

where 

Since A(A, q )  is a polynomial of A of order J ,  we can write 
J 

A i h , q ) =  1 an(q )A" .  
n=O 

If A,(q) is the largest root of the equation A(A, q )  = 0 ,  then A,(q) must satisfy A,(O) = 1 
and 

J 

A (Am(q),  9 )  = 1 a n  (q )A  k ( 4  1 3  0.  
n - U  

Expanding A,(q) in the vicinity of the critical point q = 0, we have 

Taking the total derivatives on both sides of (A5), we have 

d"A/d"q = 0 for all integer n. (A71 

When n = 1, we find 

Putting q = 0, A,(O) = 1 ,  and using the relation X i z o  a n ( q )  =A(1,  q )  = bq", (A8) gives 

A;(o) = - x - ' ~ K  if K = 1, 

= O  if K > 1 ,  

where 

If K > 1, we can take higher derivatives on both sides of (A8) and put q = 0, A,(O) = 1 
afterwards. In  general, we find the following results: 

Ak'(0) = 0 if n < K ,  

if n = K .  (A1 1) = -x -'bK ! 
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From (A6) and (A1 l ) ,  we obtain 

h,(q)= 1 - x - ' b q K  +tO(qKt l ) .  

Substituting (A121 into ( l ) ,  we finally arrive a t  iA2) and (A3). 
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